Numerical Range of Lie Product of Operators
نویسندگان
چکیده
Denote by W (A) the numerical range of a bounded linear operator A, and [A, B] = AB −BA the Lie product of two operators A and B. Let H, K be complex Hilbert spaces of dimension ≥ 2 and Φ : B(H) → B(K) be a map whose range contains all operators of rank ≤ 1. It is shown that Φ satisfies that W ([Φ(A), Φ(B)]) = W ([A, B]) for any A, B ∈ B(H) if and only if dim H = dim K, there exist ε ∈ {1,−1}, a functional h : B(H) → C, a unitary operator U ∈ B(H, K), and a set S of operators in B(H), that consists of operators of the form aP + bI for an orthogonal projection P on H if the dimension of H is at least 3, such that Φ(A) = εUAU∗ + h(A)I if A ∈ B(H) \ S, −εUAU∗ + h(A)I if A ∈ S, or Φ(A) = iεUAtU∗ + h(A)I if A ∈ B(H) \ S, −iεUAtU∗ + h(A)I if A ∈ S, where A is the transpose of A with respect to an orthonormal basis of H. The proof of this result depends on the classifications of operators A or operator pairs A, B with some symmetric properties of W ([A, B]) that are of independent interest.
منابع مشابه
On the decomposable numerical range of operators
Let $V$ be an $n$-dimensional complex inner product space. Suppose $H$ is a subgroup of the symmetric group of degree $m$, and $chi :Hrightarrow mathbb{C} $ is an irreducible character (not necessarily linear). Denote by $V_{chi}(H)$ the symmetry class of tensors associated with $H$ and $chi$. Let $K(T)in (V_{chi}(H))$ be the operator induced by $Tin text{End}(V)$. Th...
متن کاملProducts Of EP Operators On Hilbert C*-Modules
In this paper, the special attention is given to the product of two modular operators, and when at least one of them is EP, some interesting results is made, so the equivalent conditions are presented that imply the product of operators is EP. Also, some conditions are provided, for which the reverse order law is hold. Furthermore, it is proved that $P(RPQ)$ is idempotent, if $RPQ$†</...
متن کاملC*-Algebra numerical range of quadratic elements
It is shown that the result of Tso-Wu on the elliptical shape of the numerical range of quadratic operators holds also for the C*-algebra numerical range.
متن کاملThe second dual of strongly zero-product preserving maps
The notion of strongly Lie zero-product preserving maps on normed algebras as a generalization of Lie zero-product preserving maps are dened. We give a necessary and sufficient condition from which a linear map between normed algebras to be strongly Lie zero-product preserving. Also some hereditary properties of strongly Lie zero-product preserving maps are presented. Finally the second dual of...
متن کاملCohomology of aff(1|1) acting on the space of bilinear differential operators on the superspace IR1|1
We consider the aff(1)-module structure on the spaces of bilinear differential operators acting on the spaces of weighted densities. We compute the first differential cohomology of the Lie superalgebra aff(1) with coefficients in space Dλ,ν;µ of bilinear differential operators acting on weighted densities. We study also the super analogue of this problem getting the same results.
متن کامل